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most 12% and generally much less than this. The second FET, of
course, makes up the balance.

Finally, an alternative but entirely equivalent way of interpreting
the above analysis is to consider the load line seen by each FET
[5]. Each FET has the same current swing but very different mag-
nitudes and phases of voltage swing which are frequency dependent
with the result that each FET operates along a different load line.
As observed by Salib ef al. [5] the load line the FET operates along
is the electronic load line not the circuit element value of Z /2.

III. CONCLUSION

Closed-form analytic expressions for the voltage and power dis-
tribution along the drain line of an ideal distributed amplifier have
been presented. It has been shown that the power generation is very
nonuniform and that some FET’s may actually absorb power rather
than generate it over a portion of the frequency band.
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A Convergence Acceleration Procedure for
Computing Slowly Converging Series

Surendra Singh and Ritu Singh

Abstract—The application of sloped 9-algorithm to the partial sums
of a slowly converging series is shown to accelerate its convergence.
The algorithm is applied to accelerate the convergence of series rep-
resenting the free-space periodic Green’s functions involving the zeroth-
order Hankel function of the second kind, and its associated Fourier
transform. Numerical results indicate that the algorithm converges
faster than the Shanks’ transform. It is also able to sum the series to
machine precision in about 20 terms. A relative error measure is shown
as a function of the number of terms of various combinations of source
and observation points. The relative saving in computation time is also
provided to show the benefit of using the algorithm.

I. INTRODUCTION

In the numerical solution of problems involving a periodic ge-
ometry, one is usually faced with repeated evaluations of an infinite
series represented the Green's function. The Green’s function se-
ries converges very slowly. Hence, a significant amount of com-
puter CPU time is spent in repeated computations of such series.
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One way to solve the problem of slow convergence of the series is
to transform it into another series which in turn converges faster
than the original series. The transformation then becomes the key
to success or failure in achieving the accelerated convergence. Ac-
celeration techniques employed so far make use of Kummer’s
transformation in conjunction with Poisson summation formula [1],
[2], and Shank’s transform [3]. In this paper we report the use of
f-algorithm [4], [5] in accelerating the convergence of free-space
periodic Green’s functions involving a single infinite summation.
The algorithm is simple to implement and is shown to perform bet-
ter than Shank’s transform [6].

II. 6-ALGORITHM

Let S, be the partial sum of n terms of a series such that S, = §
as n — oo, where S is the sum of the series. The §-algorithm can
be computed as follows with the even order terms given by

2
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0500 = 057" +
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and the odd order terms by
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where

0% =0, 8§ =S, 3)
The even order terms, 059, », give estimates of S whereas the odd
order terms. 8%, ,, are merely intermediate quantities. The algo-

rithm can be illustrated by applying it to the slowly converging
series for [n2:

i (_l)m+l. 1

m=1 m

n2 =

As indicated, the series converges to In2 = 0.6931471. The results
of applying the f-algorithm to the sequence of partial sums S, S;,
-+, 8o are given in Table I. The algorithm converges to seven
significant digits (one digit less than the number of digits carried
in the partial sum).

III. FrREE-Srace PeErRIODIC GREEN'S FUNCTIONS

The Green’s function for a one-dimensional array of phase
shifted line sources located at (x’, y') in each unit cell and spaced
d units apart along the y axis is given by

+o

! 2
G = @ =Z_ e_jk""dHE)Z)(k[(x _ x!)_ + (y _ y/ _ md)2]1/2)

1C))

where H{ (+) is the zeroth-order Hankel function of the second
kind, k is the wavenumber of the medium, %, is the inter-element
phase shift, and the coordinates (x, y) locate the observation point.
The spatial domain Green’s function in (4) converges very slowly
for all combinations of source and observation points. The Fourier
transform of (4) gives the spectral domain Green’s function given
by

o0

G = exp (—jk,, |x — x')

I
P
m= —oo jzdkx

m

cexp [—jlk, + 2mxw/d) (y — ¥')]. (5)
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TABLE 1
APPLICATION OF §-ALGORITHM TO THE SERIES FOR [n2
n g =S, g o oy
1 1.0000000 0.6944444 0.6931490 0.6931470
2 0.5000000 0.6927083 0.6931465
3 0.8333333 0.6933332 0.6931473
4 0.5833333 0.6930555 0.6931470
5 0.7833333 0.6931972
6 0.6166666 0.6931175
7 0.7595238 0.6931657
8 0.6345238
9 0.7456349
10 0.6456349
where

VKT = (k, + 2mw /d),
—jJk, + 2mw /d) — k7,

k* > (k, + 2mm /d)’
k* < (k, + 2mzn /d)*.

(6)

The spectral domain Green’s function converges rapidly for x #
x'. This is due to the exponential factor which aids in the conver-
gence. However for x = x', the series converges very slowly.
The Green’s function for a one-dimensional periodic array of
point sources located d units apart in the z direction is given by

m

G- L % exp {—jkl(x — X' + (y — 0 + @ — md)"]'?
Cdmmiee [ — X'+ (y - Y+ (2 — md)?1/?

)

IV. NUMERICAL RESULTS

The convergence properties of the periodic Grzen's function se-
ries given in (4), (5), and (7) are reported here for various combi-
nations of source and observation points. The results obtained by
9-algorithm are compared with those obtained by the application of
Shanks’ transform and a direct summation of the series. Since the
direct summation of the Green’s function series converges very
slowly, the results of the direct sum that could fit within the scale
chosen, are shown. A convergence criterion defined in [1] is em-
ployed here to terminate the summation process. A relative error
measure is computed by comparing the result of the algorithm to
that of summing the series to machine precision. Without loss of
generality, we take k, = 0 and the reference source at the origin,
defining (x', ¥') = (0, 0).

The logarithm of the relative error magnitude versus number of
terms for the spatial domain Green’s function in (4) is shown in
Figs. 1 and 2. The convergence factor, ¢, is indicated alongside
each point in the figures. It is shown in Fig. 1 that for (x, y) =
(0.01X, 0.3N), the #-algorithm gives zero relative error in 21 terms
fore. = 1 X 1075, This indicates that the algorithm has converged
to machine precision. As shown in Fig. 2 fore, = 1 x 1077 the
f-algorithm converges to machine precision in less than 20 terms.
The Shanks’ transform converges in 53 terms with the relative error
approaching 1 X 1073, The direct sum converges extremely slowly
taking over 100 000 terms to arrive at three significant digit accu-
racy. The computation time (on VAX 6350) as a function of 1 /¢,
for the spatial Green’s function is shown in Fig. 3. As illustrated,
for (x, y) = (0.01A, 0), the f-algorithm converges in 0.06 s,
Shanks’ transform in 0.07 s and the direct sum in 40 s fore, = 1
x 107*. This results in a saving in computation time of the order
of 600 in using the f-algorithm over a direct summation of the
series.
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Fig. 1. Log of relative error magnitude versus number of terms for spatial
domain Green’s function in (4) for A = 1 m, d = 0.6, (v, y) = (0.01\,
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The logarithm of the relative error versus number of terms for
the spectral domain Green’s function given in (5) is shown in Figs.
4 and 5. As shown in Fig. 4, the §-algorithm converges to machine
precision in 20 terms for e, = 1 X 1075, It is shown in Fig. 5 that
the direct sum converges very slowly taking several thousand terms
to achieve four significant digit accuracy. On the other hand, the
#-algorithm converges to five significant digits in 17 terms for e,
=1x107*%

The magnitude of the relative error versus the number of terms
for the periodic Green’s function in (7) is shown in Figs. 6 and 7.
The spectacular convergence rate of the 8-algorithm is illustrated
in Fig. 6 for (x, y, 2) = (0.2X, 0.1\, 0.3X). In this case fore, =
I X 1073 the direct sum takes 12 000 terms, Shanks’ transform
takes 43 terms and the #-algorithm converges in merely 21 terms.
A similar result is shown in Fig. 7 for (x, y, 2) = (0.1x, 0.1\,
0.3N). Fore, = 1 X 1073, the direct sum converges in 23 000
terms, the Shanks’ transform in 40 terms and the #-algorithm in
just 19 terms. Besides converging in fewer number of terms the
#-algorithm has the least error. As the observation point is taken
closer to the reference source point at the origin, the direct sum
converges extremely slowly. Even in such cases the §-algorithm
has the fastest convergence. This is illustrated in Fig. 8 in which
the computation time (on VAX 6350) versus 1 /¢, is plotted for (x,
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Fig. 6. Relative error magnitude versus number of terms for the Green’s
function series 1n (7) for A = 1 m, d = 0.6\, (x, y, 2) = (0.2\, 0.1\,
0.3N).
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¥,2) = (0, 0, 0.3\). The saving in computation time in using the
f-algorithm over a direct summation of the series is of the order of
100.

V. CONCLUSION

The use of #-algorithm is shown to have a dramatic impact in
accelerating the convergence of slowly converging series. The al-
gorithm has been applied with success to the series representing
the free-space periodic Green’s functions. Numerical results indi-
cate that the algorithm is superior to Shanks’ transform both in
convergence and speed. In most cases the algorithm converges to
a high degree of precision in about 20 terms. This is indeed re-
markable as a direct sum of the series converges extremely slowly.
The use of #-algorithm results in a considerable amount of saving
in computation time thereby increasing the computational effi-
ciency in problem involving one-dimensional periodicity.
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On the Use of Chebyschev-Toeplitz Algorithm in
Accelerating the Numerical Convergence of
Infinite Series

Surendra Singh and Ritu Singh

Abstract—It is shown here that a simple application of the Cheby-
schev-Toeplitz algorithm enhances the rate of convergence of slowly
converging series. The algorithm is applied to series representing the
periodic Green’s functions involving a single infinite summation. The
algorithm yields highly accurate results within relatively fewer terms.
A quantitative comparison is shown with methods previously reported
in the literature.

I. INTRODUCTION

The computation of electromagnetic radiation or scattering from
a periodic geometry involves the summation of a Green’s function
series which converges very slowly. The summation of the series
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may be accelerated by transforming the series such that the new
series converges rapidly [1]-[5]. The transformation, however, re-
quires analytical work which is characteristic for each series. This
in some sense limits the applicability of the method. It is our intent
to demonstrate that algorithms [6]-[11] which can be readily ap-
plied to any slowly converging series, irrespective of its functional
form, are highly accurate and efficient. In particular, we report the
use of the Chebyschev-Toeplitz (CT) algorithm [11] in accelerat-
ing the convergence of periodic Green’s function series.

II. CHEBYSCHEV-TOEPLITZ (CT) ALGORITHM

Let S, be the partial sum of n terms of a series such that §, = §
as n = oo, where § is the sum of the series. The CT algorithm is
defined by the following equations [11]:

1% =0, 1§ =S8, o =1, M
0 =P + 2, o =3, (2)
o= 2 4t = k=12, ()
a1 =60, —0_y, k=1,2,+-- C))
T = /o, k=0,1,2, . (5)

The nth iterate of the CT algorithm is given by T{”, which gives
an estimate of the sum of the series. The algorithm can be illus-
trated by applying it to the slowly converging Liebniz series for «:

*® ( l)m
= 6
T m§0 2m + 1 . i ( )

The result of applying the CT algorithm to the sequence of par-
tial sums Sy, S, -+ -, Sg is given in Table I. The algorithm con-
verges to six significant digits. Although the even and odd order
iterates of the CT algorithm provide an estimate of S, only the even
orders are shown in the table. )

III. FrRee-SpacE PErIODIC GREEN’S FUNCTIONS
The spectral domain Green's function for a one-dimensional ar-
ray of line source spaced d units apart in the x direction is given
by

=

1
G = Z
== ] “dk\’m
- exp (—jk,,|y — y'| exp [<j@m7 /d) (x — x")] (T
where

k* > Qmu/d)
K < Qmn/dy

vk — Qmz/d),
—jNQ@mz /d)* - k*,

Y

k is the wave number of the medium, (x’, y') locates the refer-

- ence source and (x, y) locates the observation point. The series in

(7) converges very slowly whenever y = y’. This is referred to as
the ‘‘on plane’’ case. The spatial domain counterpart of the peri-
odic Green's function in (7) is given by '

G= X HPK(y -y + 0 —x = mdT?  ®

where H is the zeroth-order Hankel function of the second kind.
The Green’s function for a one-dimensional array of point sources
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