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most 12% and generally much less than this. The second FET, of

course, makes up the balance.

Finally, an alternative but entirely equivalent way of interpreting

the above analysis is to consider the load line seen by each FET

[5]. Each FET has the same current swing but very different mag-

nitudes and phases of voltage swing which are frequency dependent

with the result that each FET operates along a different load line.

Asobserved by Salibet al. [5]theload line the FET operates along

isthe electronic load line not thecircuit element value of Z./2.

III. CONCLUSION

Closed-form analytic expressions for the voltage and power dis-

tribution along the drain line of an ideal distributed amplifier have

been presented. It has been shown that the power generation is very

nonuniform and that some FET’s may actually absorb power rather

than generate it over a portion of the frequency band.

REFERENCES

[1] K. B. Niclas, R. R. Pereira, and A. P. Chang, “Onpowerd lstrlbutlon
in additive amplifiers, ” IEEE Trails. Microwave Theory Tech., vol.

38, pp. 169’2-1700, Nov. 1990

[2] G. Matthaei, L. Young, and E. M. T. Jones, Microwave Filfers,
Itnpedattce-Matc}ting Netviorks,a ttdCouplingS tructllres. New York:
McGraw-Hill, 1964.

[3] C. S. Altchison, “The intrinsic noise figure of the MESFET distrib-

uted amphfier, “IEEETi’ans. A4icrowave Theory Tech., vol. MTT-35,

pp.460-466, June 1985.
[4] Y. Ayasll, S. W. Miller, R. Mozzi, and L. K. Hanes, “Capacitively

coupled travelling-wave power amplifier, ” IEEE Truns. Microwave
Theory Tech., vol. MTT-32, pp. 1704 -1709, Dec. 1984.

[5] M. L. Salib, D. E. Dawson, and H. K. Hahn, `` Load-line analysisln
tbe frequency domain with distributed ampllfierdeslgn examples, ” m
IEEE MTT-SInt. Microwave Symp. Dig., June 1987. PP. 575-578.

A Convergence Acceleration Procedure for
Computing Slowly Converging Series

Surendra Singh and Ritu Singh

Abstract—The application of sloped O-algorithm to the partial sums
of a slowly converging series is shown to accelerate its convergence.
The algorithm is applied to accelerate the convergence of series rep-
resenting the free-space periodic Green’s functions involving the zeroth-
order Hankel function of the second kind, and its associated Fourier

transform. Numerical results indicate that the algorithm converges
faster than the Shanks’ transform. It is also ahle to sum the series to

machine precision in shout 20 terms. A relative error measure is shown
as a function of the number of terms of various combinations of source
and observation points. The relative saving in computation time is also

pt-ovided to show the benefit of using the algorithm.

I. INTRODUCTION

In the numerical solution of problems involving a periodic ge-

ometry, one is usually faced with repeated evaluations of an infinite

series represented the Green’s function. The Green’s function se-

ries converges very slowly. Hence, a significant amount of com-

puter CPU time is spent in repeated computations of such series.
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One way to solve the problem of slow convergence of the series is

to transform it into another series which in turn converges faster

than the original series. The transformation then becomes the key

to success or failure in achieving the accelerated convergence. Ac-

celeration techniques employed so far make use of Kummer’s

transformation in conjunction with Poisson summation formula [1],

[2], and Shank’s transform [3]. In this paper we report the use of

O-algorithm [4], [5] in accelerating the convergence of free-space

periodic Green’s functions involving a single infinite summation.

The algorithm is simple to implement and is shown to perform bet-

ter than Shank’s transform [6].

II. 0-ALGORITHM

Let S,, be the partial sum of n terms of a series such that S,, - S

as n ~ m, where S is the sum of the series. The O-algorithm can

be computed as follows with the even order terms given by

k= 0,1,2,.

and the odd order terms by

where

0!!’, = o, 0$) = s..

(1)

(2)

(3)

The even order terms, %fi)+ ~, give estimates of S whereas the odd

order terms. O$)+,, are merely intermediate quantities. The algo-

rithm can be illustrated by applying it to the slowly converging

series for ln2:

m (-1)”+’ ,
lr12 = x —.

~=[ m

As indicated, the series converges to ln2 = 0.6931471. The results

of applying the O-algorithm to the sequence of partial sums S,, Sz,
. . . , SIO are given in Table I. The algorithm converges to seven

significant digits (one digit less than the number of digits carried

in the partial sum).

111. FREE-SPACE PERIODIC GREEN’S FUNCTIONS

The Green’s function for a one-dimensional array of phase

shifted line sources located at (x’, y’) in each unit cell and spaced

d units apart along they axis is given by

G = ~ ‘~ e-Jk’’ndH~2)(k[(x – .X’)z + (y – y’ – md)2]1j2)
4J,. =-u

(4)

where H&) (.) is the zeroth-order Hankel function of the second

kind, k is the wavenumber of the medium, k,, is the inter-element

phase shift, and the coordinates (x, y) locate the observation point.

The spatial domain Green’s function in (4) converges very slowly

for all combinations of source and observation points. The Fourier

transform of (4) gives the spectral domain Green’s function given

by

.
G=~A exp (–jrt,,,, lx – x’ 1)

,,~= – m j“2dkX,,,

. exp [–j(k,, + 2m~/d) ( y – y’ )]. (5)
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TABLE I

APPLICATION OF &ALGORITHM TO THE SERIES FOR ln2

1
2

3
4
5’

6

7

8
9

10

1.0000000 0.6944444 0.6931490 0.6931470
0.5000000 0.6927083 0.6931465
0.8333333 0.6933332 0.6931473
0.5833333 0.6930555 0.6931470
0.7833333 0,6931972
0.6166666 0.6931175
0.7595238 0.6931657
0.6345238
0.7456349
0.6456349

where

(J.

kz – (k, + 2mx/d)2,
k,,,, =

–jd(kv + 2rnm/d)2 –k2,

kz > (k,, + 2mrr/d)’

k2 < (k,, + 2mx/d)z.

(6)

The spectral domain Green’s function converges rapidly for .x #

x’. This is due to the exponential factor which aids in the conver-

gence. However for .x = x’, the series converges very slowly.

The Green’s function for a one-dimensional periodic array of

point sources located d units apart in the z direction is given by

m exp { –jk[(x – x’ )Z + ( y – y)2 + (z – rnd)~]”z
G=&-=~_a

[(x –X’)2 + (y – y’)’ + (z – rnd)z] ’i’ “

(7)

IV. NUMERICAL RESULTS

The convergence properties of the periodic Green’s function se-

ries given in (4), (5), and (7) are reported here for various combi-

nations of source and observation points. The results obtained by

O-algorithm are compared with those obtained by the application of

Shanks’ transform and a direct summation of the series. Since the

direct summation of the Green’s function series converges very

slowly, the results of the direct sum that could fit within the scale

chosen, are shown. A convergence criterion defined in [1] is em-

ployed here to terminate the summation process. A relative error

measure is computed by comparing the result of the algorithm to

that of summing the series to machine precision. Without loss of

generality, we take k,. = O and the reference source at the origin,

defining (x’, y’) = (O, O).

The logarithm of the relative error magnitude versus number of

terms for the spatial domain Green’s function in (4) is shown in

Figs. 1 and 2. The convergence factor, q, is indicated alongside

each point in the figures. It is shown in Fig. 1 that for (x, y) =

(0.0 1A, 0.3h), the O-algorithm gives zero relative, errorin21 terms

for CC= 1 x 10-5. This indicates that the algorithm has converged

to machine precision. As shown in Fig. 2 for q = 1 X 10-5 the

O-algorithm converges to machine precision in Ie ss than 20 terms.

The Shanks’ transform converges in 53 terms with the relative error

approaching 1 X 10-3. The direct sum converges extremely slowly

taking over 100000 terms to arrive at three significant digit accu-

racy. The computation time (on VAX 6350) as al function of 1/c,

for the spatial Green’s function is shown in Fig. 3. As illustrated,

for (x, y) = (0.01X, O), the O-algorithm converges in 0.06 s,

Shanks’ transform in 0.07 s and the direct sum in 40 s for q = 1

x 10-4. This results in a saving in computation time of the order

of 600 in using the O-algorithm over a direct summation of the

series.
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The logarithm of the relative error versus number of terms for

the spectral domain Green’s function given in (5) is shown in Figs.

4 and 5. As shown in Fig. 4, the O-algorithm converges to machine

precision in 20 terms for Cc = 1 x 10-5. It is shown in Fig. 5 that

the direct sum converges very slowly taking several thousand terms

to achieve four significant digit accuracy. On the other hand, the

O-algorithm converges to five significant digits in 17 terms for CC

= 1 x 10-4.

The magnitude of the relative error versus the number of terms

for the periodic Green’s function in (7) is shown in Figs. 6 and 7.

The spectacular convergence rate of the 0-algorithm is illustrated

in Fig. 6 for (x, y, z) = (0.2h, O.1~, 0.3A). In this case for e< =

1 x 10-5 the direct sum takes 12 000 terms, Shanks’ transform

takes 43 terms and the ()-algorithm converges in merely 21 terms.

A similar result is shown in Fig. 7 for (x, y, z) = (O. 1A, O. 1A,

0.3A). For e, = 1 x 10-5, the direct sum converges in 23000

terms, the Shanks’ transform in 40 terms and the d-algorithm in

just 19 terms. Besides converging in fewer number of terms the

O-algorithm has the least error. As the observation point is taken

closer to the reference source point at the origin, the direct sum

converges extremely slowly. Even in such cases the &algorithm

has the fastest convergence. This is illustrated in Fig. 8 in which

the computation time (on VAX 6350) versus 1/cC is plotted for (x,
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Y, z) = (O, O, 0.3h). The saving in computation time in using the

O-algorithm over a direct summation of the series is of the order of

100.

V. CONCLUSION

The use of O-algorithm is shown to have a dramatic impact in

accelerating the convergence of slowly converging series. The al-

gorithm has been applied with success to the series representing

the free-space periodic Green’s functions. Numerical results indi-

cate that the algorithm is superior to Shanks’ transform both in

convergence and speed. In most cases the algorithm converges to

a high degree of precision in about 20 terms. This is indeed re-

markable as a direct sum of the series converges extremely slowly.

The use of O-algorithm results in a considerable amount of saving

in computation time thereby increasing the computational effi-

ciency in problem involving one-dimensional periodicity.
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On the Use of Chebyschev-Toeplitz Algorithm in
Accelerating the Numerical Convergence of

Infinite Series

Surendra Singh and Ritu Singh

Abstract–It is shown here that a simple application of the Cheby -

schev-Toeplitz algorithm enhances the rate of convergence of slowly

converging series. The algorithm is applied to series representing the

periodic Green’s functions involving a single infinite summation. The

algorithm yields highly accurate results within relatively fewer terms.
A quantitative comparison is shown with methods previously reported

in the literature.

I. INTRODUCTION

The computation of electromagnetic radiation c~rscattering from

a periodic geometry involves the summation of a Green’s function

series which converges very slowly. The summation of the series
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may be accelerated by transforming the series such that the new

series converges rapidly [1]–[5]. The transformation, however, re-

quires analytical work which is characteristic for each series. This

in some sense limits the applicability of the method. It is our intent

to demonstrate that algorithms [6]-[ 11] which can be readily ap-

plied to any slowly converging series, irrespective of its functional

form, are highly accurate and efficient. In particular, we report the

use of the Chebyschev-Toeplitz (CT) algorithm [1 1] in accelerat-

ing the convergence of periodic Green’s function series.

II. CHESIYSCHEV-TOEPLITZ (CT) ALGORITHM

Let S. be the partial sum of n terms of a series such that S,, -+ S

as n ~ m, where S is the sum of the series. The CT algorithm is

defined by the following equations [11]:

~y~ = 0, & = Sn, u~ = 1, (1)

(n) + z~f+l), ~1 = 3,fy) = to (2)

t~~ , = 2t;~’ + 4tf+ ‘) – tp ,, k=l,2, . . . (3)

o~+, = 60~ – Uk-l, k=l,2, ””” (4)

T~) = tf)/uL, / 2 =0 ,1,2,.... (5)

The n th iterate of the CT algorithm is given by ‘T~), which gives

an estimate of the sum of the series. The algorithm can be illtrs-

trated by applying it to the slowly converging Liebniz series for m:

.=iw (6)
,,,=02rn + 1“.

The result of applying the CT algorithm to the sequence of par-

tial sums So, S,, . . . , S8 is given in Table I. The algorithm con-

verges to six significant digits. Although the even and odd order

iterates of the CT algorithm provide an estimate of S, only the even

orders are shown in the table.

HI. FREE-SPACE PERIODIC GREEN’S FUNCTIONS

The spectral domain Green’s function for a one-dimensional ar-

ray of line source spaced d units apart in the x direction is given

by

m

G= ~ -~
,. = -m j2dkYJ,c

. exp (--jkY,,,l y – y’ I exp [–j(2rn~/d) (x – x’)] (7)

where

[

~~k’ - (2m~/d)’, kz > (2mrr/d)2
k~,,,=

–j~(2m~/d)l – k2, k2 < (2rnn/d)z

k is the wave number of the medium, (x’, y‘) locates the refer-

ence source and (x, y) locates the observation point. The series in

(7) converges very slowly whenever y = y‘. This is referred to as

the “on plane” case. The spatial domain counterpart of the peri-

odic Green’s function in (7) is given by

G = ~ H~2)(k[(v – y’)2 + (X ‘X’ – ~)z] I /2) (8)
~=..x

where H&) is the zeroth-order Hankel function of the second kind.

The Green’s function for a one-dimensional array of point sources

0018-9480/92$03 .00 @ 1992 IEEE


